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Introduction: Structural Control
• Goal 

– solve dynamic problems that cannot be addressed by 
standard design methodologies such as extreme 
vibration due to the wind

– improve seismic performance of vital structures such as 
hospitals, schools, bridges during an earthquake

• Up to date, various control technologies have 
been proposed and applied in practice

• Classification: Active, Passive and Semiactive 
(Housner et al. 1997)

• Our Focus Today: Semiactive Control with Smart 
Dampers
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Introduction: Smart Dampers

• Smart dampers are controllable dampers. 
Example: Magnetorheological (MR) Fluid Damper 
(Spencer et al. 1996, Yang et al 2002)

• Fundamental property: dissipates energy from the 
system attached

– There are no well-established control strategy to account 
the nonlinearity due to the dissipative nature

• One strategy that is frequently used is clipped 
optimal control (Dyke et al.)

F

x
.
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Introduction: Smart Dampers

F

x
.



5

Introduction: Smart Dampers

Magnetorheological Fluid Damper

Choke

MR 

Fluid
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Introduction: Smart Dampers

Magnetorheological Fluid Damper

Choke

MR 

Fluid

Zero Magnetic 

Field

Max Magnetic 

Field
F

x
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Any arbitrary curve within 

the operational envelope is 

possible
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Introduction: Clipped Optimal Control

• A two-stage control strategy

• Can only exert 

dissipative forces

• System assumed to 

be fully

active and linear
• E.g. Linear quadratic 

regulator (LQR)

Smart

Damper

uSecondary

Controller

Primary

Controller

uac

t

• Clipping algorithm

• Attempts to make 

smart damper 

reproduce uact

i

CLIPPED OPTIMAL CONTROL

• How does the fully-active assumption effects the 
performance of the semiactive system?

→We must understand the dissipative nature of      
the primary controller

→WHAT IS DISSIPATIVITY?
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Introduction: Dissipativity
•Dissipative force: uv < 0

u : force

v : velocity of the point where the force is applied

• Inaudi (2000) find the probability that a primary control 
force will be dissipative.
– Showed by numerical examples that semiactive systems with 

controllers with high probability of being dissipative can be more 
effective

– Christenson (2003, 2004) considered several other examples to 
justify the results

• Erkus et al. (2002) used percentage of the time that 
primary control force is dissipative; results are similar

• Johnson (2000) worked on a particular control theory to 
improve dissipativity, yet the proposed method was not 
effective
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Introduction: Questions
• What is dissipativity? Can we define and quantify 

dissipativity of a controller and use it to analyze 
primary controller dissipativity characteristics?
– OBJECTIVE : Introduce dissipativity indices that can 

quantify dissipative nature of a force 

• Can we modify the dissipativity characteristics of a 
primary controller? Can we improve it?
– OBJECTIVE : Employ dissipativity indices to modify the 

dissipativity nature of a control force

• Does improving dissipativity of the primary controller 
improves the final semiactive performance?
– OBJECTIVE : Investigate dissipativity-performance relations 

for various semiactive systems that are common in civil 
engineering
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Dissipativity Indices
• Strictly dissipative force

– Consider a control force u (t ) applied to a point x0 on 
the structure. u (t ) is called strictly dissipative force if 
the rate of energy flow is negative for all t  0. 

   ( ) ( ) ( ) 0,  for all   0

                      ( )  is strictly dissipative

u t v t t t

u t

• Percentage of the dissipative control forces

ua : control force

vd : velocity of point x0

H [.] : Heaviside step function

−

=

= −  
1

% a d

0

1
1 [ ( ) ( )]

N

k

D H u k t v k t
N
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Dissipativity Indices

• Probability that the control force is dissipative 
(Inaudi, 2000)

a d

1

p a d

cos ( )
[ 0]

u v
D P u v





−

=  =

: correlation coefficient between ua and vda du v

• Assumptions used

– Excitation is a zero-mean Gaussian white noise
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Proposed Dissipativity Indices

• Mean energy flow rate

– Consider the expected value of the condition for strictly 
dissipative force:

e a d[ ( ) ( )]D E u t v t=

– Not a normalized value, may be misleading

• Normalized mean energy flow rate

= a d
ne 2 2

a d

[ ]

[ ] [ ]

E u v
D

E u E v

– Relation between Dp and Dne for an LQ problem: Dne is 
the correlation between ua and vd
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Dissipativity Indices: Multiple Controllers

• Following weighted cumulative index is proposed 
to represent the dissipativity of a system with 
multiple controllers:

= =


c ( )
    where    

( )

N
i

i i i N
i

j

j

RMS u
D w D w

RMS u

Here Di is the dissipativity of the i th controller

ui is the i th control force
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Dissipativity Indices

• Is there a way to incorporate dissipativity indices 
into a control theory, such as a linear quadratic 
regulator problem (LQR), and modify the 
dissipativity characteristics of the controller.

– LQR is originally in terms of equality constraints.

– Represent the LQR in terms of matrix inequalities so that 
we can incorporate the dissipativity indices into the LQR 
problem as matrix inequalities.

– Find the LMI representation of the LQR problem, which 
allows us to obtain the numerical solution of the LQR 
problem with a dissipativity index.
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LMI Representation of an LQR Problem
• Linear Quadratic Regulator (LQR) Problem

– Consider a linear time-invariant system and the optimization problem

z z z

= + +

= + +

q Aq Bu Ew

z C q D u F w

0Q 0R
are symmetric 

weighting matrices

T T T T Tmin   [ ]

subject  to    and 

E + + +

= + + = −

K
q Qq u Ru q Nu u N q

q Aq Bu Ew u Kq

T T

z z z z

T

z z

        = = +

= + + +

T

z

T T

z z

Q C QC N C QD C N

R R D QD D N N D

Find K s.t.

T
0    and    0

 
=   

 

Q N
W R

N R

To be well-posed, LQR weights must satisfy
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LMI Representation of an LQR Problem

+ − −

 
− + − +   

 

= 

1/ 2 1/ 2 T T

( , , )

1/ 2
T T T

T 1/ 2

T

min   ( ) ( ) ( ) ( )

subject  to  0,   0

                        and      0

T

Tr Tr Tr Tr
Y S X

Q SQ X YN N Y

X R Y
AS BY SA Y B EE

Y R S

S S

• Final Form of the LMI-LQR problem

• Let the solution of the LMI-LQR problem be Y0, S0

and X0

• Then, the feedback gain, F0 = Y0(S0)
-1

• S is called a Lyapunov Matrix. In the above 
problem, S0 = P, where P is the state covariance 
matrix
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Is the LMI-LQR Equivalent to the LQR?

Story mass = 100 tons

Story period, T = 0.5 sec

Modal damping,  z = 2% 

 
=  

 

= =,     

M 0
Q

0 K

R N 0

An N-DOF structure

Compare the control gains and covariance matrices of 

LMI-LQR and LQR with the following error indices:

−
=

LMI LQR

1 LQR

min( ) min( ) min element 
,  

of control gainmin( )

ij ij

ij

K K
E

K

−
=

LMI LQR

2 LQR

max( ) max( ) max element 
,  

of control gainmax( )

ij ij

ij

K K
E

K

 



−
=

LMI LQR

3 LQR

min eigenvalue min( ) min( )
,  

min( ) of covariance

ij ij

ij

E

 



−
=

LMI LQR

4 LQR

max eigenvalue max( ) max( )
,  

max( ) of covariance

ij ij

ij

E
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Is the LMI-LQR Equivalent to the LQR?

• MATLAB LMI 
Control Toolbox

• As the system 
DOF increases, 
LMI-solver 
becomes 
inefficient

• A maximum of 10 
DOF is suggested 
to be used
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Is the LMI-LQR Equivalent to the LQR?

• As the system DOF 
increases, LMI-solver 
becomes very time-
inefficient

• Time efficiency of the LMI solver

~3 hours

36
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Dissipativity Constraints

− T L

v eFSC

•De-based constraint:

 
−

−  
T

v
ne neT T

v v

<   where  1 1
FSC

FSF C SC

•Dne-based constraint:

LMI-Toolbox can be used

LMI-Toolbox cannot be used; an iterative method is proposed
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2-DOF Systems: Shear Building (De)
m1 = m2 = 100 tons

Story period, T = 0.5 sec

Modal damping,  z = 2%

a a d

d

a d

,    0

0,    0

u u v
u

u v


= 



Ideal Damper

 

 


−
= +

= +

1 2 1

abs abs
1 2

2 2

d

2 2

a 4

n

     (DRIFT)

1
( )   (ABS. ACCEL)

x x x

x x

J

J

 


 
= + + 2

d a u  (DRIFT + ABS. ACCEL)J J J

Outputs to be minimized

→Absolute floor accelerations

→Storey drifts

Performance Ind.:
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2-DOF Systems: Shear Building (De)
5 5

12

:10 10

:1000

:10







−

−

→

Reduced design

possibilities

Improved

dissipativity

Improved

dissipativity

Reduced design

possibilities
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2-DOF Systems: Shear Building (De)

Systems D%(%) Jd Ja

SAct 0.760 0.160 0.135

SAct-Dis 0.793 0.129 0.134

20% Improvement
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2-DOF Systems: Highway Bridge (De)
Mass ratio, m2/m1 = 5

Pier natural period, T = 0.5 sec

Pier damping, z = 5% 

Bearing damping

Active Systems → Zero

Uncontr. → 196 kNsec/m,  

Control design is selected such that it produces  

low dissipative control forces

→ Numerical simulations shows that realistic MR 

damper reduces dissipativity further, reducing the 

overall semiactive performance

A realistic MR damper model is used.
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2-DOF Systems: Shear Building (Dne)

Iterative solution

– Start with an initial Si and Fi and solve the following 
problem

– Iterate over F and S


−


T

testv
neT T

v v( )i i i i

FSC

C CF S F S

1/ 2 1/ 2 T T

( , , )

1/ 2
T T T

T 1/ 2

min   ( ) ( ) ( ) ( )

subject  to  0,   0T

Tr Tr Tr Tr+ − −

 
− + − +   

 

Y S X
Q SQ X YN N Y

X R Y
AS BY SA Y B EE

Y R S

For known Fi

Si, this is an 

LMI
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2-DOF Systems: Shear Building (Dne)

-0.5

-0.5
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2-DOF Systems: Shear Building (Dne)
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Base Isolated Benchmark Structure 
• 8-story steel braced frame building

• Superstructure rests on a rigid concrete base

– Columns, beams, bracings and rigid slab

– First to sixth floors are L-shaped, seventh and eighth floors are rectangular

• Rigid base is isolated from the ground by the isolation layer

– Rubber bearings, lead-rubber bearings, sliding friction bearings

Representative figure of benchmark  structure

Superstructure

Base

Ground

Base Isolation
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BM Structure: Modelling

• Base and the isolation 
layer
– 3 DOFs at the center of mass of 

the base

– Various linear and nonlinear 
isolator elements

• Superstructure
– Three dimensional: x, y and 

rotational DOF at each floor
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BM Structure: LQ-based Design

• Outputs to be minimized are

– Absolute floor accelerations

– Corner isolator drifts

• The LQ weight matrices:




 
= = =  

,     ,    r
a

b
0

Q R I N 0
0

• Kalman filter is used to estimate the states

• Kanai-Tajimi filter is augmented to the system and the 
augmented system is used in the LQ design

2

g g g

KT 2 2

g g g

2
( )

2

s
G s

s s

z  

z  

+
=

+ +

g

g

0.3

17 rad/sec

z



=

=

a and b determines the relative 

importance of abs. floor acceleration 

and corner isolator drifts
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BM Structure: Kanai-Tajimi Filter

• Filter parameters

• Filter parameters are 
given by Ramallo et al. 
(2002)

• Four representative 
earthquakes (El Centro, 
Hachinohe, Kobe and 
Northridge) are used

(Figure is taken from Ramallo et al. (2002))
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BM Structure: Controller Locations

• 12 controllers are used

• In an active system, the 
controllers are assumed to 
be fully active

• In a semiactive system 
20-ton MR dampers are 
used. Damper forces are 
magnified by a factor to 
have comparable force 
levels to the primary 
control force
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BM Structure: Performance Indices
J DEFINITION

J1 Peak Base Shear

J2 Peak First Floor Shear

J3 Peak Base Drift

J4 Peak Interstory Drift

J5 Peak Absolute Floor Acceleration

J6 Peak Controller Force

J7 RMS Base Drift

J8 RMS Absolute Floor Acceleration

J9 Energy Absorbed by the Control Devices

J10 Peak Controller Force Normalized by Structure Weight

J11 RMS Floor Drifts
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BM Structure: Control Designs

• Two control designs are considered

– DES1: Best Peak Base Drift (J3)

– DES2: Best Peak Absolute Floor Acceleration (J5)

– In the parametric strudies, following conditions will be 
used

DES1 DES2

J3 min (J3) J3 < 1.0

J4 J4 < 1.0

J5 J5 < 1.0 min (J5)

J10 J10 < 0.15
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Linear BM structure: Active System

• Newhall Earthquake

Best J3

Best J5
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Linear BM Structure: Performance Ind.

• Newhall Earthquake

BEST J3 (DES1) BEST J5 (DES2)

J Definition ACT SACT ACT SACT

J1
Peak Base Shear 0.969 0.979 0.581 1.058

J2
Peak First Floor Shear 1.071 1.188 0.611 1.240

J3
Peak Base Drift 0.764 0.854 1.047 0.972

J4
Peak Interstory Drift 0.689 1.103 0.379 1.123

J5
Peak Absolute Floor Acceleration 0.750 1.087 0.372 1.157

J6
Peak Controller Force 0.624 0.552 0.488 0.473

J7
RMS Base Drift 0.774 0.848 1.034 1.025

J8
RMS Absolute Floor Acceleration 0.804 1.110 0.423 1.066

J9
Energy Absorbed by the Con. Dev. 0.701 0.718 0.477 0.651

J10
Normalized Peak Controller Force 0.111 0.099 0.087 0.084

J11
RMS Floor Drifts 0.876 1.026 0.502 1.003
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Linear BM Structure: Active System

• Newhall Earthquake

X Best J3 Design 

o Best J5 Design

High Dissip

Low Dissip



38

Linear BM Structure: Active System

• Stochastic dissipativity Indices

X Best J3 Design 

o Best J5 Design
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Nonlinear BM Structure
• No efficient control theory is available for nonlinear 

structures that are common in civil engineering

• Equivalent linearization methods is utilized to obtain 
and equivalent liner model (ELM) of the nonlinear 
structure

• An iterative method is proposed to obtain an ELM

– Nonlinear BM structure has bilinear isolators

– ELM will have linear isolators
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Nonlinear BM Structure: Control Design
1. START : Pick a linear model

– Select linear stiffness for nonlinear 
bearings: preyield stiffness

2. Design a linear controller

3. Numerical analysis of both controlled 
nonlinear and linear structure 
models for a specific ground motion 
data

4. Iteration decision

– Compute RMS force of nonlinear 
bearings

– Compute f

– Update stiffness

– No change in the damping

5. Go to step 2 END : an error 
convergence criteria is satisfied.

nonli

f

n

b

lin

b

RMS[ ]

RMS[ ]

F

F
 =

linear

f

linear

1

i

i i
K K

+
=
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Nonlinear BM Structure: ELM vs Nonlinear

Base Disp.

Nonlin Force

Hysteretic 
Behavior of 
the Lead 
Plugs Only

• El Centro Earthquake

Controlled Equivalent Linear System

Controlled Nonlinear System

EQ Design Final Design
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Nonlinear BM structure: Active System

• Newhall Earthquake
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Linear BM Structure: Performance Ind.

• Newhall Earthquake

BEST J3 (DES1) BEST J5 (DES2)

J Definition ACT SACT ACT SACT

J1
Peak Base Shear 0.984 1.169 0.704 1.138

J2
Peak First Floor Shear 1.190 1.358 0.829 1.228

J3
Peak Base Drift 0.925 0.880 1.153 0.783

J4
Peak Interstory Drift 0.860 0.791 0.958 0.734

J5
Peak Absolute Floor Acceleration 0.841 1.543 0.548 1.444

J6
Peak Controller Force 0.490 0.527 0.479 0.522

J7
RMS Base Drift 0.885 0.770 1.127 0.716

J8
RMS Absolute Floor Acceleration 0.953 1.431 0.643 1.399

J9
Energy Absorbed by the Con. Dev. 0.348 0.418 0.082 0.421

J10
Normalized Peak Controller Force 0.087 0.094 0.085 0.093

J11
RMS Floor Drifts 0.790 0.744 0.982 0.709
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Nonlinear BM Structure: Active System

• Newhall Earthquake

X Best J3 Design 

o Best J5 Design`
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Nonlinear BM Structure: Active System

• Stochastic Indices

X Best J3 Design 

o Best J5 Design
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Discussion: Major Observations

• Two classes of dissipativity indices are identified:

Characteristics of the Control Force D

GROUP 1

Normalized mean energy dissipation rate Dne

Percentage of dissipative forces D%

Probability of dissipative forces Dp

GROUP 2

Energy dissipation rate De

Energy dissipated by the device J9



47

Discussion: Major Observations

• Proposed dissipativity indices effectively identify the 
dissipativity nature of a controller and has many 
benefits over other indices

– They have more general form

– Suitable for mathematical investigation (e.g. LMI-LQR)

– A great benefit for a realistic structural control problem is 
time-efficiency; this is a major issue in semiactive design

System Time

Proposed Indices (Active Lyapunov) < 1 sec

Active Earthquake (linear and nonlinear) > 10 mins

Semiactive Earthquake (linear and nonlinear) > 4 hours
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Discussion: Major Observations

• Performance of the semiactive system is dependent 
to both the primary controller performance (a 
corresponding fully active system) and dissipativity 
of the primary controller.

– A highly dissipative control design does not necessarily 
result a high semiactive performance; for these control 
designs, the primary controller performance may be low.
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Conclusions

• Dissipativity indices are introduced to quantify the 
dissipativity nature of a primary control force in 
clipped optimal control of smart dampers.

• Proposed indices are utilized to modify an LQR 
problem to achieve control forces various 
dissipativity levels

• Dissipativity-performance relations of simple and 
complex structural systems are investigated with 
the dissipativity indices are proposed modified LQR 
theory
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Conclusions: It is shown that…
• Dissipativity indices can effectively identify the 

dissipativity nature of the primary controller, which 
helps to identify control designs with higher 
dissipativities and, therefore, designs that are 
more suitable for smart dampers

• Proposed modified LQR can be used in low-order 
systems to modify the dissipativity levels of the 
control force for better semiactive performance, 
yet it is not recommended to use for complex 
systems as the available LMI-solver is inefficient

• Dissipativity analysis provides a generalized, time-
efficient tool for a semiactive design, which is very 
time consuming in complex structural systems.
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Thanks

• Thank you for your attention
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Introduction: Structural Control

Active Control

Wind induced vibration 

mitigation of high rise

buildings

Passive Control

Seismic isolation of 

buildings and bridges, 

energy dissipation in 

structures

Semiactive Control

Seismic and wind 

induced vibration of 

structures 

SMART DAMPERS



53

• Active Control• SemiActive Control

Introduction: Control of Smart Dampers

STRUCTURE

Excitation Responses

CONTROLLER
ACTIVE

DEVICE

MeasurementsControl Force

SMART

DAMPER

Active Device : Theoretically, can apply any type force

Smart Damper : Can only exert dissipative forces

Semiactive Control Strategy
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Introduction: Organization
• Introduce dissipativity indices to quantify dissipativity

• Propose a method to modify a control theory to achieve 
controllers with various dissipativity levels
– Use linear matrix inequality (LMI) methods to represent a linear 

quadratic regulator (LQR) in terms of matrix inequality constraints

– Represent the dissipativity indices in terms of matrix inequalities and 
append to LMI-LQR problem

• Investigate structural systems common in civil engineering
– 2-DOF models:

• A shear building

• An elevated highway bridge

• Utilize the proposed LMI-LQR controller to modify the dissipativity of the 
primary controller in clipped optimal control

– A realistic structural control problem: base isolated benchmark building

• Linear isolation

• Nonlinear isolation

• Extensive dissipativity performance analysis
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Dissipativity Indices

• Strictly dissipative force

– Consider a force f (t ) applied to a point x0 on the 
structure. f (t ) is called strictly dissipative force if the 
rate of energy flow is negative for all t  0. 

( ) ( ) ( ) 0,  for all   0

                      ( )  is strictly dissipative

f t v t t t

f t

   

v (t ) is the velocity of point x0

 (t ) is a strictly negative function

– The force and the velocity have opposite directions

– A damper force is a strictly dissipative force
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LMI Representation of an LQR Problem

• Linear Quadratic Regulator (LQR) Problem

– Consider a linear time-invariant system

z z z

= + +

= + +

q Aq Bu Ew

z C q D u F w

Find the constant control gain K such that

T T T T Tmin   [ ]

subject  to  [State Eq'n]  and 

E + + +

= −

K
z Qz u Ru z Nu u N z

u Kq

0Q 0R are symmetric weighting matrices
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LMI Representation of an LQR Problem

• Another form of LQR Problem

T T T T Tmin   [ ]

subject  to    and 

E + + +

= + + = −

K
q Qq u Ru q Nu u N q

q Aq Bu Ew u Kq

T T

z z z z

T

z z

        = = +

= + + +

T

z

T T

z z

Q C QC N C QD C N

R R D QD D N N D
where

T
0    and    0

 
=   

 

Q N
W R

N R

To be well-posed, LQR weights must satisfy
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Dissipativity Constraints

 


−
 −
 
 
    

T
1 v

T T

v v

p p

cos

 where  0 1

FPC

FPF C PC

 
−

 −  
T

v
ne neT T

v v

 where  1 1
FPC

FPF C PC

− T

v eFPC

Dp-based constraint:

De-based constraint:

Dne-based constraint:

P : State 

covariance matrix



59

Dissipativity Constraints

− T

v eFPC

T T

v e   where  ( ) ( ) 0T−  − + − + =FSC A BF S S A BF EE

− T L

v eFSC

De-based constraint:

• This constraint is weaker than the “strictly dissipative 
force” condition (ua vd < 0)
– Mean value is used

– Lyapunov matrix (S) is used instead of the covariance matrix (P)
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Dissipativity Constraints

 
−

 −  
T

v
ne neT T

v v

 where  1 1
FPC

FPF C PC


−

− + − + =

T

v
neT T

v v

T

<

where  ( ) ( ) 0T

FSC

FSF C SC

A BF S S A BF EE


− T

v
neT T

v v

<
FSC

FSF C SC

Dne-based constraint:
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2-DOF Systems: Highway Bridge

Normalized indices

• Originally, dissipativity 
levels of the active system 
is low

• Dissipativity levels in the 
semiactive system is 
lowered further from 52% 
to 25%.

• This reduces the 
performance further



62

Dissipativity Constraint Based on Dne

1/ 2 1/ 2 T T

( , , )

1/ 2
T T T

T 1/ 2

min   ( ) ( ) ( ) ( )

subject  to  0,   0T

Tr Tr Tr Tr+ − −

 
− + − +   

 

Y S X
Q SQ X YN N Y

X R Y
AS BY SA Y B EE

Y R S

− T L

v eand  FSC


−


T

v
neT T

v v

FSC

FSF C SC

– Nonlinear constraint, may be converted to BMI

– Solution set is not guaranteed to be convex;

• No guaranteed algorithm exists for the numerical solution

Consider the LMI-LQR problem
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2-DOF Systems: Shear Building (Dne)
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2-DOF Systems: Shear Building (Dne)
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BM Structure: Modelling

• Superstructure

Superstructure

Rigid base and the isolation layer

b b b T abs

s s s s s s s s b
+ + = −η C η K η Φ MR x

• Rigid base and the 
isolation layer

 + + = − + + +abs

b b b b b b b g c f sM x C x K x M R x S u S f F

• Base shear

( )= +T b T abs

s s s s s bF R M x R x

• Equation of motion
+ + = + +g c f ( )Mx Cx Kx Rx S u S f x, x

• State-space form
= +g ( )q Aq+Bu+Ex Ff q

 
=  

 

b
s

b

η
x

x

modal response 
of the 
superstructure 
wrt the base

b
s :η

b :x base 
displacement 
wrt the ground
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Nonlinear BM Structure

• Active control design: Linearization techniques

– Two goals:

1. Obtain an equivalent linearized model of the nonlinear 
structure

2. Design a linear controller for the equivalent linear model

– Equivalent in which sense?

• Equivalent model should represent response characteristics of 
the controlled nonlinear structure!

• Need to know response of the controlled nonlinear structure

• Need to know controller

• Need to know equivalent linear model

➔ Design of an equivalent linear model and design of a 
linear controller are coupled problems
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Nonlinear BM Structure
• Structural properties

– Originally 31 rubber bearings and 61 friction bearings

– Lead rubber bearings are used instead of frictional 
bearings

➔ 31 rubber bearings and 61 lead rubber bearings

31 rubber (linear)

61 lead (bilinear) rubber (linear)

91 rubber (linear)

61 lead plugs bilinear

91 linear elements (rubber) :
Stiffness: 919.4 kN/m

Damping: 101.4 kN.s/m

61 bilinear elements (lead plugs) :
Preyield stiffness: 5546.7 kN/m, Postyield stiffness: 0 kN/m

Yielding force: 132.5 kN
Damping: 207 kN.s/m (!)
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INTERDEPENDENCE
REQUIRES AN

ITERATIVE
PROCEDURE

INTERDEPENDENCE
REQUIRES AN

ITERATIVE
PROCEDURE

Nonlinear BM Structure: Control Design

GOAL:

Simulation of the
Nonlinear System with

Linear Controller

Design a Linear
Controller for
the Nonlinear

Structure

Pick a “Good”
Linear Model

requires a linearized
model of the structure

requires knowledge
of response levels of the
nonlinear structure with

linear controller

requires the
linear controller

Converged? END

START
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linear preyield/K K linear preyield/K K

Nonlinear BM Structure: Gamma Iteration

Variation of 
f for several 
values of 

linear

preyield

K

K

Convergence 
guaranteed

Kfinal/Kpreyield=0.175
(Average of seven earthquake iterations)
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Nonlinear BM Structure: ELM vs Nonlinear

• Jiji Earthquake
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Nonlinear BM Structure: ELM vs Nonlinear

Base Disp.

Nonlin Force

Hysteretic 
Behavior of 
the Lead 
Plugs Only

• Jiji Earthquake

Controlled Equivalent Linear System

Controlled Nonlinear System

EQ Design Final Design


